busworld. **Southeast Asia** CONFERENCE

16 - 17 MAY 2024

PUBLIC TRANSPORT INNOVATORS

BUS FLEET

INSIGHTS FROM GLOBAL

ALL ABOUT BUS, COACH AND **PEOPLE**

ELECTRIFICATION:

WWW.BUSWORLDSOUTHEASTASIA.ORG

ORGANIZED BY

ORGANIZED BY

16 May 2024

Session 01

Evolution of the Electricity Costs Made by Transjakarta, Since the Implementation of Electric Buses

Daud <u>Jos</u>eph Transjakarta Operational and Safety Director BUS FLEET ELECTRIFICATION: INSIGHTS FROM GLOBAL

PUBLIC TRANSPORT INNOVATORS

Transjakarta Today

i e e e e e

251 M

Ridership in 2023

(YTD November 2023)

408.95 Km Corridor Length Non Corridor 2,326.3 Km

or of

8 Types of Services

4,632 Fleets

20 Operators

89% of Jakarta residents live within 500 meters from Transjakarta bus stop

Highest Daily Customer Year 2015 320,000 460,000 2016 2017 489,076 2018 721,900 2019 998,658 2020 1,041,815 2021 508,698 2022 751,254 1,174,098 2023 2024 1,241.556

People Near Frequent Transit

1.8%

Results of Integration & Expansion 2004

Connecting The Life of Jakarta

Transjakarta First 100 EV Buses

Operating since 2022 First launch 2 March 2022

3 Operators Mayasari Bakti, PPD, Damri

3 Types of Bus Models SAG, BYD, Skywell

10-Years Contract

Overnight Charging at the Depo

Transjakarta Electric Fleet Progress

Insights from 100 EVs and 2-Years Operation

The fleets have **surpassed expectations** in terms of operated kilometers, zero breakdown, and electricity efficiency.

Transjakarta pays the operator based on **Rp/km**

2

Daily km per bus operated

Zero breakdowns

Expected KM contract **196** km

busworld

CONFERENCE

Implemented realization up to **110%**

>99% zero breakdowns from operation plan

Higher efficiency in electricity usage

Plan: 0.77 km/kWh Actual: 0.91 km/kWh

Challenges: Transitioning to Electric Buses

Reduce Acquisition Cost

- Decrease the initial investment required for electric buses.
- By reducing bus prices significantly, ideally aiming for a 35% decrease from current prices

Justify the Benefits of Implementing EVs

- Convincing stakeholders and the public about the advantages of electric buses is vital.
- Operating EV buses has a **positive impact** on the environment is essential.

Reducing Electric Bus Battery Capacity

- Reducing the battery capacity by either 50% or 33% is a challenge to make EV bus more cost-effective.
- Allowing the implementation of Opportunity Charging

Carbon Trading

 Maximizing the benefits of carbon trading helps gain financial advantages while supporting environmental objectives.

The KM Contract achieved up to 110% throughout the EV Operation

The Availability of Electric Vehicle (EV) is Better Than ICE Buses (>99%)

busworld southeast asia CONFERENCE

Challenges: Cost to Establish Sustainable Transportation

	EV 7-year	EV 10-year
	contract	contract
ICE 7-year	35% more	15% more
contract	expensive	expensive

The maintenance and energy costs for electric buses are significantly lower compared to Internal Combustion Engine (ICE) buses. However, due to the higher investment costs (bus prices and charging infrastructure), the overall Total Cost of Ownership (TCO) remains higher.

ICE	EV*	EV vs ICE	
TCO remains more economical	TCO remains higher	EV TCO is 15-35% higher	
Bus Investments comprises 25% of TCO	Bus Investments comprises 49% of TCO	EV bus investments is 2-2.5 times greater	
Energy (fuel) accounts for 16% of TCO	Energy (electricity) accounts for 4.6% of TCO	EV energy costs are 70% more economical	
Maintenance makes up 26% of TCO	Maintenance makes up 14% of TCO	EV bus maintenance costs are 46% more cost-effective	

*Average ICEVs price

busworld. **Southeast Asia** CONFERENCE

Regenerative Braking helps increase EV range by up to 22%

Source: Valladolid J., & Calle, M. (2023). Analysis of Regenerative Braking Efficiency in an Electric Vehicle Through Experimental Test. doi:10.17163/ings.n29.2023.02

Stop-and-Go Strategy

- Optimizes efficiency but also sets the stage for a windfall effect.
- Aligns well with technologies like regenerative braking that commonly found in EVs.

Regenerative Braking in EVs

- Capturing and converting kinetic energy into electrical energy during braking
- Regenerative braking effectively recycles energy that would otherwise be lost, allowing it to be stored and reused.

Windfall Effect

Additional **benefits** from stop and go strategy:

- Energy efficiency
- Financial savings
- Improved passengers experience.

Efficiency Goals

- Studies have shown, this process can enhance an EV's range by up to 22%
- Highlighting the significant impact of regenerative braking on maximizing efficiency and extending driving distances on a single charge.

Plan for Electric Vehicles Procurement and Retrofit

SUKSES JAKARTA UNTUR

	2024	2025	2027	2030
Total Fleets (units)	4,661	5,256	5,262	5,262
ICE Bus (units)	4,461	3,574	2,631	0
EVs (units)	300	1,874	2,631	5,262
% EV (units)	4.7%	32%	50%	100%

Transjakarta Electrification Target

When EV's TCO is lower than ICE's, the conversion to EV is no longer questionable because it's not only dedicated for sustainability or environment, but also effectivity and efficiency.

the first 100 EVs

compared to ICE Buses